

26º Congresso Nacional de Transporte Aquaviário, Construção Naval e Offshore - SOBENA 2016

Rio de Janeiro, 8 a 10 de Novembro de 2016

Análise Comparativa do Processo de Projeto Desenvolvido em dois Softwares Comerciais (NAPA e Maxsurf) aplicado a um Fast Supply Boat (FSV) de deslocamento de alta velocidade para operar no pré-sal

Richard D. Schachter e Flávia Vieira Monteiro Universidade Federal do Rio de Janeiro

Resumo:

Um dos fatores essenciais para o sucesso de um projeto de uma embarcação é a compatibilidade entre os *softwares* utilizados. Atualmente, o mercado possui alguns *softwares* na área de projeto naval que procuram integrar cada vez mais todas as fases de projeto no mesmo sistema e dentre esses encontram-se os produtos comerciais NAPA e o Maxsurf.

Esse trabalho tem como intuito realizar uma análise comparativa do funcionamento dos *softwares* comerciais NAPA e Maxsurf. Para isso, foi desenvolvido o projeto da embarcação *Fast Supply Vessel* (FSV), em paralelo, no NAPA e no Maxsurf, sendo anotadas todas as diferenças percebidas, como a facilidade de utilização, qualidade da interface, tempo necessário para definir os dados de entrada, tempo de processamento das análises, integração do programa, clareza dos dados de saídas. A estruturação e a sequência de utilização em cada Sistema foram analisadas, mostradas e comparadas. O processo de projeto aplicado utilizou uma metodologia comum aos dois, desenvolvida para o projeto e envolveu fatores como a definição da Forma (de deslocamento de alta velocidade), Hidrostáticas, Cruzadas, Resistência, Propulsão (supercavitante), Borda Livre, Arqueação, Estrutura, Compartimentação, Arranjo Geral, Peso Leve, Condições de Carregamento, Equilíbrio, Estabilidade Intacta e Avariada (probabilística), *Seakeeping*, etc. A cada fator executado, comparações são feitas, resumidas e analisadas no final do trabalho. A embarcação FSV em estudo transporta 50 Passageiros, 315 t de Óleo e Água e 250 t de Carga e opera a 22 nós.

1 - Introdução

No início das atividades offshore, os crew boats eram empregados para realizar o transporte dos funcionários para as plataformas, que eram localizadas relativamente próximas à costa. Com a descoberta do pré-sal, a exploração teve um deslocamento para regiões de lâmina d'água mais profunda e, consequentemente, mais afastadas do continente. Para reduzir custos de operação surgiu o conceito de Fast Supply Vessels (FSV), que passaram a transportar alguma carga além de passageiros.

Um dos fatores essenciais para o sucesso do projeto de uma embarcação é a escolha dos *softwares* utilizados durante o seu projeto. Atualmente, os *softwares* procuram integrar as

fases de projeto, diminuído a necessidade de importar dados. Dentro desse conceito encontram-se os softwares comerciais NAPA e Maxsurf.

2 - Objetivo

O objetivo do presente trabalho, Monteiro (2015), é realizar uma análise comparativa do funcionamento dos softwares comerciais NAPA e Maxsurf. Para isso, foi desenvolvido o projeto da embarcação (FSV), em paralelo, no NAPA e no Maxsurf, sendo anotadas todas as diferenças percebidas, como a facilidade de utilização, qualidade da interface, tempo necessário para definir os dados de entrada, tempo de processamento das análises, integração do programa e clareza dos dados de

saídas. O processo de projeto aplicado utilizou uma metodologia comum aos dois, desenvolvida para o projeto e envolveu fatores como a definição da Forma (de deslocamento de alta velocidade), Hidrostáticas, Cruzadas, Resistência, Propulsão, Compartimentação, Equilíbrio e Estabilidade, *Seakeeping*, etc. A cada fator executado, comparações são feitas, resumidas no final do trabalho e analisadas.

3 - Os Softwares

NAPA (2015) - NAPA é um software comercial que incorpora a definição do modelo 3D com hidrodinâmica avançada, estabilidade e ferramentas de projeto estrutural. Ele pode ser utilizado para conceber qualquer tipo de estrutura flutuante, e acomoda todas as necessidades iniciais de projeto. Este software funciona com divisão de funções em subsistemas. O princípio fundamental da divisão do sistema é composto de funções que compartilham um conjunto comum de dados e conceitos, enquanto as conexões entre os subsistemas são mantidos tão estreitas quanto possível. Os subsistemas do NAPA podem ser acessados através da sua janela principal, apresentada a seguir.



Figura 1 - Janela principal do NAPA

Outra forma de trabalhar no NAPA é através da ferramenta "MANAGER", que é formada por um grupo de macros que realizam ações específicas em um conjunto de objetos, fornecendo uma interface gráfica do usuário (GUI) para a aplicação. Ela pode ser acessada na página principal do NAPA, conforme a Figura 2. Para abrir os gerenciadores deve-se proceder de acordo com a Figura 3.

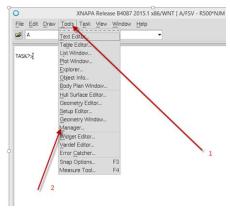


Figura 2 – Abrindo o Manager NAPA

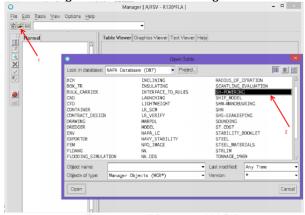


Figura 3 - Manager NAPA

Maxsurf (2015) - Maxsurf é um *software* de arquitetura naval com ferramentas para as diversas fases do processo de projeto de navio e suas análises. Com ele, os usuários podem modelar formas de casco; avaliar o equilíbrio e estabilidade; prever o desempenho; e realizar definição estrutural e análise iniciais.

Esse software é organizado por módulos (Maxsurf Pro. Hydromax, Hull Speed. Seakeeper, na Versão 17, p.e.), onde cada módulo cria um banco de dados completo, que é usado diretamente por todos os módulos existentes. Todos os módulos compartilham uma interface gráfica Microsoft Windows. Após criar o Modelo no módulo MS Pro deve-se abrir esse modelo nos outros módulos para realizar as análises. O modelo é acessado conforme apresentado na Figura 4. Nessa figura o modelo está sendo acessado no Módulo Hydromax. porém os passos nos outros módulos são análogos. O banco de dados criado em Maxsurf Pro é compartilhado com o novo módulo aberto automaticamente.

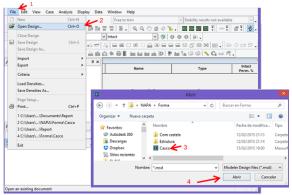


Figura 4 – Abrindo o modelo no Maxsurf Hydromax

4 - Projeto da Embarcação

4.1 - Características da Embarcação

As características da embarcação são:

Tabela 1 – Características da Embarcação

Lpp(m)	52,09
L(m)	52,4
B(m)	10,5
D(m)	5,5
Carga líquida (m³)	315 (200 óleo diesel, 115 água)
Carga no Convés (t)	250
T (m)	2,6
V(nós)	22

4.2 - Projeto da Forma

A forma foi feita a partir de um modelo do Free! Ship (2015) que se enquadrasse ao máximo nas características iniciais do FSV. A partir da forma inicial de deslocamento de alta velocidade, foram feitas variações na proa (com e sem bulbos), na popa (espelhos e saída de fluxo) e no LCB (Lakernby), procurando entre essas a que apresentasse a melhor combinação de resistência ao avanço mínima e menores movimentos em avaliação preliminar de *seakeeping*.

A forma final pode ser vista a seguir:

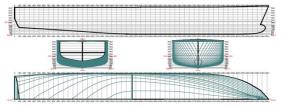


Figura 5 – Plano de Linhas da forma final

No NAPA a importação de arquivo é feito no subsistema GM >DEF, através de comandos. O formato do arquivo importado do Free!Ship foi o IGES.

O comando utilizado pode ser visto na Figura 6. Onde TEMP é o nome da pasta onde foi colocado o arquivo no formato IGS, FVM é o nome do arquivo e CAS é o nome dado para o casco que será salvo no *database*. A forma obtida é apresentada na Figura 7.

Figura 6 – Comando para importar a forma para o NAPA

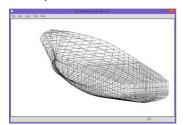


Figura 7 – Forma no NAPA

Importar para o Maxsurf é um processo muito simples. O primeiro passo é exportar do Free!Ship em algum formato que o Maxsurf possua. O formato escolhido é novamente o IGES

O passo seguinte é abrir o Maxsurf, depois 'clicar' com o botão direito em "File", em seguida clicar em "import" e depois em IGES SURFACES, conforme pode ser visto na Figura 8. A Figura 9 apresenta a forma no Maxsurf.

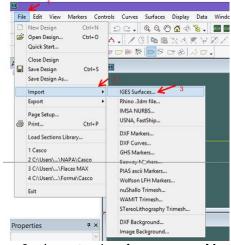


Figura 8 – Importando a forma para o Maxsurf

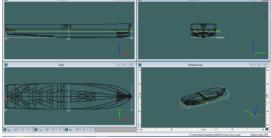


Figura 9 - Forma no Maxsurf

4.3 - Hidrostáticas e Cruzadas

Utilizando o NAPA e o Maxsurf foram geradas as curvas cruzadas e as curvas e tabelas hidrostáticas, depois do que foi realizada uma comparação entre os resultados.

4.3.1- Hidrostáticas e Cruzadas no Maxsurf

As curvas Hidrostáticas no Maxsurf são calculadas no programa Maxsurf Hydromax. A

interface da página é apresentada na Figura 10**Figura**. Para realizar o cálculo das hidrostáticas, deve-se seguir os passos apresentados nessa figura. A tabela hidrostática é apresentada na Figura 11. Os passos para calcular as cruzadas são semelhantes, assim como o formato dos dados de saída.

Figura 10 – Interface Gráfica do módulo Hydromax

	Draft Amidships m	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900
1	Displacement t	0,0000	1,830	7,048	15,59	27,33	42,17	59,90	80,25	103,0	128,2
2	Heel deg	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
3	Draft at FP m	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900
4	Draft at AP m	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900
5	Draft at LCF m	0,000	0,100	0,200	0,300	0,400	0,500	0,600	0,700	0,800	0,900
6	Trim (+ve by stern) m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
7	WL Length m	10,470	28,608	30,989	32,915	34,658	36,307	37,948	39,637	41,338	42,973
8	Beam max extents on	0.000	1,761	3,412	4,912	6,205	7,309	8,161	8,767	9,228	9,563
9	Wetted Area m^2	0,000	35,151	68,616	101,471	133,395	164,233	193,030	219,953	245,702	270,828
10	Waterpl. Area m^2	0,000	34,543	67,077	98,805	129,580	159,127	185,820	210,393	233,645	256,115
11	Prismatic coeff. (Cp)	0,000	0,680	0,639	0,606	0,586	0,570	0,559	0,550	0,543	0,539
12	Block coeff. (Cb)	0.000	0.354	0.325	0,313	0,310	0.310	0,315	0.322	0.329	0,338
13	Max Sect. area coeff. (0.537	0.513	0.523	0.540	0.553	0.574	0.598	0.622	0.641
14	Waterpl. area coeff. (C	0,000	0,685	0,634	0,611	0,602	0,600	0,600	0,605	0,612	0,623
15	LCB from zero pt. (+ve	0,000	33,230	32,108	31,420	30,897	30,454	30,039	29,633	29,237	28,849
16	LCF from zero pt. (+ve	0,000	32,383	31,292	30,558	29,955	29,390	28,769	28,163	27,567	26,978
17	KB m	0,000	0,066	0,132	0,198	0,264	0,330	0,396	0,460	0,525	0,589
18	KG m	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600	2,600
19	BMt m	0,000	3,807	6,785	8,962	10,430	11,275	11,545	11,396	11,042	10,611
20	BML m	0,000	802,608	446,877	329,124	272,678	240,356	220,003	205,009	193,932	186,127
21	GMt m	-2,600	1,273	4,317	6,560	8,095	9,005	9,341	9,256	8,966	8,600
22	GML m	-2,600	800,074	444,409	326,722	270,343	238,087	217,799	202,869	191,857	184,116
23	KMt m	0,000	3,873	6,917	9,160	10,695	11,605	11,941	11,856	11,566	11,200
24	KML m	0,000	802,674	447,009	329,322	272,943	240,687	220,399	205,469	194,457	186,716
25	Immersion (TPc) tonne	0,000	0,354	0,688	1,013	1,328	1,631	1,905	2,157	2,395	2,625
26	MTc tonne.m	0,000	0,281	0,601	0,978	1,418	1,927	2,505	3,125	3,795	4,530
27	RM at 1deg = GMt.Dis	0,000	0,041	0,531	1,784	3,861	6,627	9,765	12,964	16,124	19,237
28	Max deck inclination d	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
29	Trim angle (+ve by ster	0,0000	0,0000	0,0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Figura 11 – Tabela Hidrostática Maxsurf

4.3.2 - Hidrostáticas e Cruzadas no NAPA

Os cálculos das hidrostáticas e cruzadas são feitos no subsistema HYD (Hydrostatics). Existem duas maneiras de trabalhar com esse subsistema: através de comandos ou através de uma interface gráfica. Foi escolhido utilizar a interface gráfica. Para abrir a interface devese seguir os passos da Figura 12. A interface gráfica é apresentada na Figura 13.

Figura 12 – Abrindo a Interface no NAPA

Os cálculos das hidrostáticas e cruzadas são feitos 'clicando' no botão direito nos respectivos botões. A tabela hidrostática é apresentada a seguir, na Figura 14. O formato das cruzadas é semelhante.

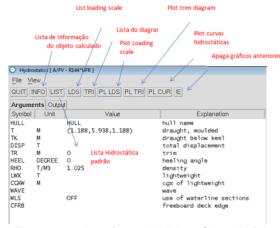


Figura 13 – Interface da Hidrostática NAPA

T	DISP	LCB	KMT	CB	WLA	MCT	TPC
m	t	m	m		m2	tm/cm	t/cm
4.000	1479.6	23.862	5.138	0.6598	480.9	17.5	4.9
4.100	1528.9	23.854	5.115	0.6652	482.3	17.6	4.9
4.200	1578.5	23.848	5.096	0.6704	483.7	17.7	5.0
	1628.1					17.8	
4.400	1677.9	23.842	5.069	0.6803	486.5	18.0	5.0
4.500		23.842				18.1	
4.600	1777.9		5.057				
4.700	1828.1		5.055	0.6938			
4.800	1878.5		5.055				
4.900	1929.0	23.857	5.059	0.7022	493.1	18.6	5.1
5.000	1979.6		5.065			18.7	
5.100	2030.3	23.872		0.7101			
5.200	2081.2		5.083			19.0	
5.300	2132.2		5.095	0.7176		19.1	
5.400	2183.3	23.902	5.109	0.7212	499.5	19.2	5.1
5.500	2234.6		3.310		68.4		
5.600	2241.6		3.317	0.7140			0.7
5.700	2248.6		3.324				0.7
5.800		24.064			67.6		0.7
5.900	2262.4	24.113	3.338	0.6840	67.4	0.1	0.7
6.000	2269.3	24.161	3.346	0.6747	67.1	0.1	0.7

Figura 14 – Tabela Hidrostática NAPA

4.4 - Resistência ao Avanço

Para a obtenção da resistência ao avanço, foi utilizado o método estatístico de Holtrop (1984) e Holtrop e Mannen (1982).

4.4.1 - Resistência ao Avanço no Maxsurf

A resistência no Maxsurf é calculada no programa *Maxsurf Hull Speed*. A interface do Maxsurf está apresentada na Figura 16. Os dados são inseridos na janela "*Data*" e o resultado é mostrado na janela "*Results*". O resultado obtido é apresentado na Figura 15.

	Speed (kn)	Froude No. LWL	Froude No. Vol.	Holtrop Resist. (kN)	Holtrop Power (kW)
1	0,000	0,000	0,000		
2	0,550	0,013	0,030	0,2	0,045
3	1,100	0,025	0,059	0,6	0,338
4	1,650	0,038	0,089	1,3	1,095
36	19,250	0,444	1,041	281,2	2785,079
37	19,800	0,457	1,070	314,1	3199,746
38	20,350	0,470	1,100	347,0	3632,621
39	20,900	0,482	1,130	379,8	4083,589
40	21,450	0,495	1,160	412,6	4552,523
41	22,000	0,508	1,189	445,3	5039,288

Figura 15 – Resultado da resistência ao avanço no Maxsurf

4.4.2 - Resistência ao Avanço no NAPA

O cálculo de resistência no NAPA foi feito através da ferramenta "MANAGER". Para abrir o gerenciador, deve-se seguir os passos 1 e 2 da Figura 3. Através desse gerenciador é possível entrar com os dados de entrada, determinar o método utilizado, realizar os cálculos e adquirir os resultados. A janela principal do SH-POWERING pode ser vista na Figura 17. As pastas ficam do lado esquerdo e suas informações são abertas do lado direito. As pastas de dados de entrada podem ser mudadas e atualizadas.

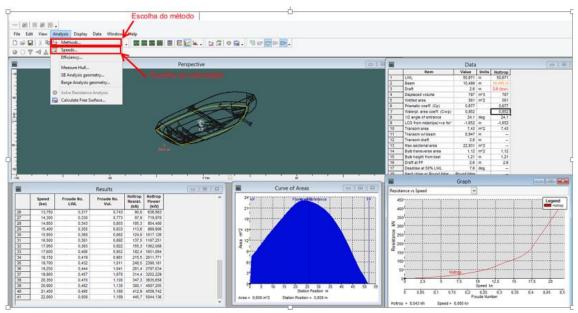


Figura 16 – Interface Maxsurf – Resistência ao Avanço

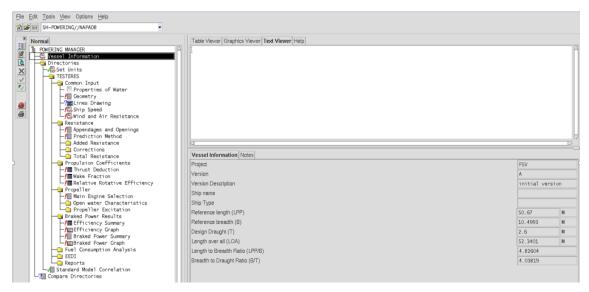


Figura 17 – Cálculo da resistência no NAPA

O resultado da resistência ao avanço pode ser obtido na pasta "Reports" e está apresentado na Figura 18.

Fn	Vs	Rt
	knots	kN
0.000	0.000	0
0.025	1.100	1
0.051	2.200	2
0.076	3.300	5
0.102	4.400	8
0.127	5.500	13
0.152	6.600	18
0.178	7.700	24
0.203	8.800	31
0.228	9.900	39
0.254	11.000	50
0.279	12.100	64
0.305	13.200	83
0.330	14.300	100
0.355	15.400	117
0.381	16.500	141
0.406	17.600	183
0.432	18.700	241
0.457	19.800	303
0.482	20.900	370
0.508	22.000	440

Figura 18 – Resultado da resistência ao avanço no NAPA

4.5 - Sistema Propulsivo

O sistema propulsivo de embarcações de apoio a plataformas desempenha três funções básicas: propulsão, manobra e *stationkeeping*. Para escolha do sistema propulsivo utilizou-se a Série Newton-Rader (1961) de hélices supercavitantes que operam completamente submersos até aproximadamente 40 nós. Este tipo de propulsão é bem adequado para este FSV, cuja velocidade de operação é de 22. Os *softwares* NAPA e Maxsurf não possuem esse método para cálculo do propulsor, portanto essa parte não foi feita nos *softwares*.

Para selecionar o hélice foi utilizado o programa Hélice Super Cavitante (Castelli et al 2014).

O motor selecionado foi o motor MTU 16V 1163 TB93 (MTU 2015) com 5920 BKW. As características do sistema propulsivo são apresentadas a seguir, na Tabela 2:

Tabela 2 – Características do Sistema Propulsivo

Diâmetro do propulsor	2.5 m
Razão de Áreas	0.95
Razão de Passo	1.24
Número de Pás	3
Número de Propulsores	2
Rotação do hélice	293 rpm
PKW total	8808 KW
BKW total	11589,6 KW
Motor	16V 1163 TB93
Rotação do Motor	1300 rpm
Redução	1:4.4
Redutora	Wärtsilä SCV 68

O posicionamento do motor e redutora pode ser visto a seguir, Figura 19:

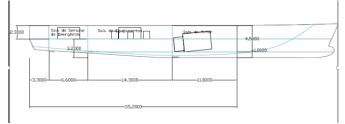


Figura 19 – Posicionamento do Motor e Redutora

4.6 - Borda Livre

A Borda livre foi calculada de acordo com o Capítulo 3 da "International Convention on Load Lines" (1966). A Borda Livre obtida segundo o regulamento mencionado a cima foi de 0,48 m.

4.7 - Arqueação

O cálculo da arqueação é baseado na "International Convention on Tonnage Measurement of Ships" (1969). O valor encontrado para a arqueação bruta foi de 803,34 toneladas e para a arqueação liquida foi de 241 toneladas.

4.8 - Tripulação

O número de tripulantes e sua qualificação, definida de acordo com a NORMAM 01 (2005), resultando em 11 tripulantes.

4.9 - Estrutura

A topologia é formada por cavernas gigantes, que juntamente com hastilhas e vaus formam os anéis gigantes. As chapas do costado, fundo e convés são reforçadas por perfis longitudinais. O espaçamento entre cavernas gigantes é de 1,1 m e entre longitudinais é de 0,4 m. A Seção Mestra pode ser vista na Figura 20.

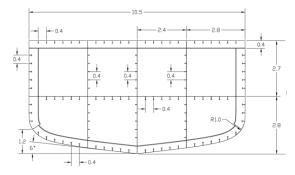


Figura 20 - Croquis da Seção Mestra

A estrutura foi definida utilizando a regra da ABS – Rules for Building and Classing High-Speed Craft (2007). É importante salientar que as espessuras do chapeamentos e dos reforços foram feitas baseadas na lista de espessura de alumínio comerciais fornecida pela empresa Refritubos (2015).

Na Tabela 3 as espessuras mínimas dos chapeamentos calculadas pela regra da ABS, Parte 3, Capítulo 3, Seção 3, são apresentadas junto com as espessuras comerciais utilizadas.

Tabela 3- Espessuras dos Chapeamentos

-000	oodiao aoo	<u> </u>	apoumontoo
		Es	pessura
	Calculada (mm))	Comercial (mm)

Fundo	12,28	12,7
Costado	8,73	9,52
Convés Principal	5,85	6,35
Antepara Transversal	6,35	6,35
Convés Intermediário	5,84	6,35
Antepara Longitudinal	3,4	6,35
Superestrutura	7,21	7,94

Foram calculados os valores da inércia mínima e do módulo de seção mínimo de cada reforçador e gigante da estrutura sendo possível dimensionar os mesmo a fim de atender esses requisitos, o resultado foi apresentado na Tabela 4.

O módulo de seção mínimo requerido foi calculado de acordo com a Parte 3 – Capítulo 2 - Seção 1 – item 1.1.1 para seção transversal da viga navio e o valor obtido foi de 3484,77 cm²m.

Tabela 4– Dimensionamento dos reforçadores

e verilicação							
	Altura da Alma (mm)	Espessura da Alma (mm)	Altura do flange (mm)	Espessura do Flange (mm)			
Longitudinal do fundo	140	9,52	45	9,52			
Longitudinal convés	110	6,35	50	6,35			
Longitudinal costado	125	7,94	75	7,94			
Hastilha	350	25,4	250	25,4			
Vau	350	19,04	250	19,04			
Caverna	440	19,04	250	19,04			
Reforçador das Antep. Long.	70	9,52	30	9,52			
Prumo	70	9,52	30	9,52			
Longitudinal do Convés Intermediário	140	9,52	45	9,52			

A Figura 21 apresenta a modelagem feita no AutoCAD (2013) da estrutura que estende por toda a embarcação. Ela foi utilizada para calcular o Módulo de Seção que existe em toda a embarcação. Essa simplificação está a favor da segurança uma vez que outros elementos estruturais contribuiriam para a resistência estrutural. Da Figura 21 retira-se a inércia de 1,6390 m⁴ e a altura da linha neutra de 2,53 m, a razão dos dois dá o módulo de seção calculado de 0,65m³, que equivale a 650000 cm³, atendendo ao requisito.

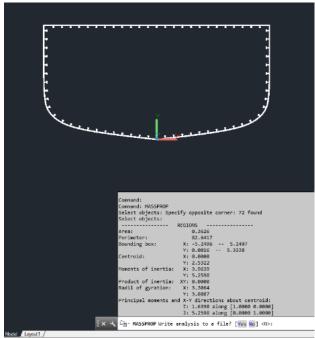


Figura 21 - Seção Mestra modelada - AutoCAD

4.10 - Compartimentação

A compartimentação foi baseada nos requisitos técnicos da MARPOL (2002) e NORMAM (2005). O conceito de avaria hipotética da MARPOL que leva em conta as di-

mensões e o tipo de embarcação para dimensioná-las, foi utilizado para a determinação do comprimento mínimo dos tanques. As dimensões dos rasgos são apresentadas a seguir:

Tabela 2 – Dimensões de rasgo de Avaria

	Costado	Fundo
Extensão Lateral (m)	4,5	4,5
Extensão Transversal (m)	2,1	3,57
Extensão Vertical (m)	Todo o Pontal	0,21

A compartimentação foi realizada em paralelo no NAPA e Maxsurf.

4.10.1 - Compartimentação - Maxsurf

A compartimentação é feitas no módulo Maxsurf Hydromax. A sua interface é apresentada na Figura 22. A compartimentação é criada na janela 'Input'. Nessa janela os nomes dos compartimentos assim como suas dimensões e características são definidos. Os limites longitudinais dos tanques são definidos através da distância em metros à perpendicular de ré. Outra opção para compartimentar é criar superfícies de referência no Maxsurf Pro e usálas para limitar os tanques.

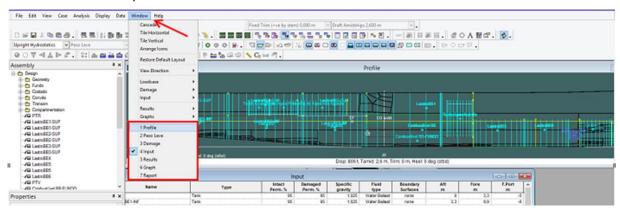


Figura 22 - Interface do Maxsurf Hydromax

4.10.2 - Compartimentação - NAPA

A principal ferramenta para compartimentar no NAPA é o "Geometry Editor". O Geometry Editor é aberto através da página principal do NAPA, clicando com o botão direito em "Tools" e depois em "Geometry Editor". Sua interface é apresentada na Figura 25. Antes de começar a compartimentar é possível criar superfícies de referência para os compartimentos evitando "gaps" entre um compartimento. As superfícies são criadas 'clicando' em 2 e os compartimentos em 1. Outra forma de criar superfícies é com comandos na ferramenta "Text Editor". As superfícies desse

projeto foram criadas através de comandos, ver síntese nas Figuras 23a e b.

Figura 23a – Criando uma superfície (1)

Figura 1b – Criando uma superfície (2)

Para criar um compartimento novo deve-se 'clicar' em 3 na Figura 25. Os limites do compartimento são definidos no canto esquerdo da página.

Outra forma de compartimentar é através de comandos, na ferramenta "TEXT EDITOR". Para tanques de formas complexas essa forma de compartimentar é excelente. A síntese básica do comando é apresentada a seguir:

ROOM name 'descriptive text'
LIM limits
[ADD limits/room]
[RED limits/room]
[SYM/REF]

Figura 2 – Comando para criar um compartimento

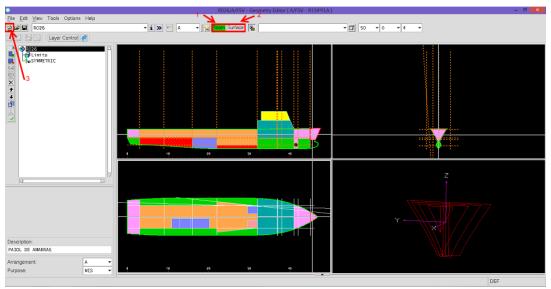


Figura 25 – Interface da compartimentação no NAPA

4.11 - Peso Leve e Centro de Gravidade

O peso leve consiste no peso total da embarcação pronta para navegar exceto tripulantes e consumíveis, como combustível, viveres, lubrificante entre outros.

O peso leve foi calculado em partes, sendo elas: Chapeamento externo do casco; Outros elementos estruturais; Superestrutura; Equipamentos da Praça de Máquinas; Equipamentos de Convés; Equipamento da Superestrutura e acomodações (outfitting: outfit, joiner e tubulação). O peso leve foi calculado e depois o seu resultado foi inserido como dado de entrada no Maxsurf e no NAPA.

4.11.1 - Peso de Aço

A estimativa do peso de aço foi realizada no software Rhinoceros (2007) com o auxílio de superfícies e ferramentas capazes de calcular o centróide de cada uma delas. A modelação dos reforçadores foi feita com base nas dimensões calculadas pelas regras da RBNA (2008) e ABS (2007).

O Chapeamento da estrutura foi calculado utilizando as mesmas regras, onde as espessuras e material de cada região foram definidos de acordo com os escantilhões calculados na seção de estrutura. O peso de Chapeamento é de 36,00 t, com LCG=24,5 m, VCG=2,8 m e TCG=0,0 m.

Os elementos estruturais do casco foram modelados como sólidos no programa Auto-CAD com o apoio de linhas do casco obtidas do programa FreeShip. O programa então é capaz de fornecer volume e CG de um conjunto de elementos. Multiplicando-se os volumes pelo peso específico do alumínio (2,7 t/m³). O peso total desses elementos foi de 73,42 t, com LCG=23,63 m, VCG=3,0 m e TCG=0,0 m.

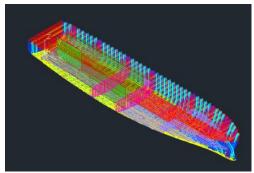


Figura 3 - Estrutura do FSV, exceto Chapeamento

O peso da superestrutura foi calculado levando em consideração a área da seção transversal dos dois conveses presentes na mesma, não só do chapeamento, mas também dos reforçadores. O peso encontrado foi de 5,19 t com LCG=39,38 m e VCG=7,76 m.

4.11.2 - Peso do outfitting e Equipamentos

O peso de *outfitting* e equipamentos (superestrutura, convés e PM) foram estimados através de catálogos de fabricantes e informações de páginas da *web* de lojas fornecedoras.

4.11.3 - Peso Leve e CG Total

O resultado do peso leve com seu centro de gravidade está mostrado a seguir:

 Tabela 6 - Peso Leve e Centro de Gravidade

 Peso Leve (t)
 LCG (m) PR
 VCG (m) LB

 225,00
 28,661
 3,19

4.12 - Arranjo Geral

Para fazer o arranjo de forma concisa e correta, foram utilizados os critérios da NORMAN 01. O arranjo foi realizado no Auto-CAD.

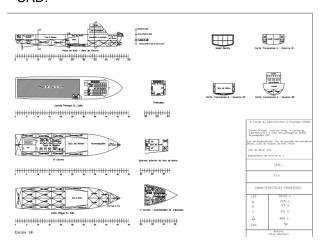


Figura 4 - Arranjo Geral

4.13 - Condições de Carregamento

Combinou-se as possíveis condições de carregamento considerando 0% ou 100% (com ou sem carga de convés, de óleo, de água e passageiros) totalizando 16 condições, que se multiplicam por 2, para se analisar partida, 100% de consumíveis, e chegada, 10% de consumíveis.

4.13.1 - Carregamentos - Maxsurf

As Condições de Carregamento são determinadas no módulo Maxsurf Hydromax. A condição de carregamento é definida 'clicando' no botão marcado com o número 1. As propriedades dessa condição são dadas na janela com o número 2. A janela onde são criadas as condições de carregamento é apresentada na Figura 28, marcada pelo número 3. Nessa janela é fornecida a porcentagem de preenchimento de cada tanque. As condições de carregamento ficam separadas por abas nessa janela, e para mudar de uma condição para outra basta 'clicar' nessas abas.

4.13.2 - Carregamentos - NAPA

As condições de carregamento no NAPA são criadas na 'Task Loading Condition', acessada a partir da sua janela principal. A sua interface é apresentada na Figura 29. As definições das condições de carregamento são dadas na aba *Load*, onde as definições são dadas informando a massa em toneladas ou o volume em metros cúbicos ou a porcentagem dos tanques. Nessa aba é possível definir se será feita a definição de todos os tanques ao mesmo tempo, ou definir por tipos de tanques (água de lastro, combustível, etc.), em 'Select Subset', marcado pelo número 3, o que pode simplificar a visualização e evitar a entrada de algum valor errado.

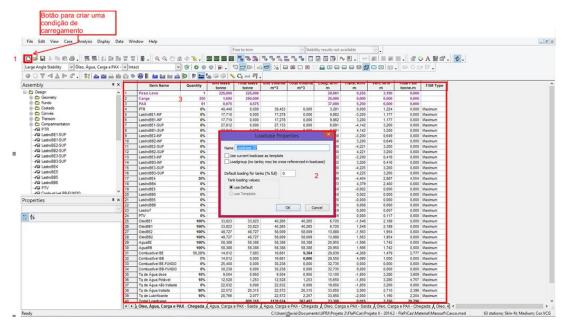


Figura 28 - Interface para Condições de Carregamento - Maxsurf

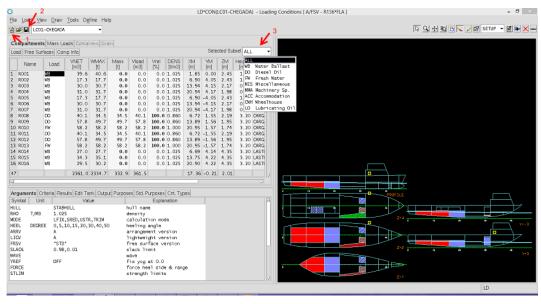


Figura 29 - Interface para Condições de Carregamento - NAPA

4.14 - Estabilidade Intacta e Equilíbrio

O cálculo da estabilidade intacta e do equilíbrio foram feitos nos dois *softwares* e comparados. Considerou-se aceitável um *trim* entre 0 e 1,5% Lpp, o que daria um *trim* de 0,78m.

4.14.1 – Estabilidade Intacta e Equilíbrio – Maxsurf

A estimativa da estabilidade intacta e equilíbrio foram feitas no módulo Maxsurf Hydromax. Para iniciar o cálculo de equilíbrio devese escolher a opção *Equilibrium* e a estabilidade a opção *LARGE ANGLE STABILITY*. Para processar as análises, clica-se no botão marcado na Figura 30. Para escolher o critério a ser utilizado para o cálculo da estabilidade intacta deve-se clicar em 'Analysis' e depois em 'Criteria'.

Figura 30 – Interface Condição de Carregamento

Os critérios utilizados no Maxsurf são os critérios dados em HSC 2000 Anexo 8, monocasco, Intacto, Capítulo 2 parte B (1994).

Na Figura 31 é apresentada a condição de Chegada, Carregada, como um exemplo dos dados de saída para a estabilidade.

4.14.2 – Estabilidade Intacta e Equilíbrio – NAPA

Os cálculos de Estabilidade intacta e de Equilíbrio no NAPA são feitas na 'Task Loading Condition'. O cálculo do equilíbrio no NAPA é feito automaticamente ao criar ou abrir uma condição de carregamento e o seu resultado aparece na aba 'Results'.

O primeiro passo para realizar os cálculos de estabilidade intacta é definir o objeto que será utilizado para esses cálculos, chamado de 'STABHULL'. Esse objeto define quais partes do casco, suas superestruturas e apêndices devem ser incluídos para o cálculo de estabilidade. Sua definição pode ser vista a seguir, Figura 32:

ROOM STABHULL, LIM <HULL, Y>0, Z<MAINDECK SYM ADD R040 ADD R041 ADD R043 ADD R044 RED TUNNEL

Figura 32 – STABHULL– montagem de componentes para a estabilidade

Code	Criteria	Value	Units	Actual	Status	Margin %
HSC mono. Intact	2.3.3.1: Weather criterion				Pass	
	Angle of steady heel shall not be greater than	16,0	deg	0,4	Pass	+97,48
	(<=)					
	Angle of steady heel / Deck edge Immersion	80,00	%	1,17	Pass	+98,54
	angle shall not be greater than (<=)					
	Area1 / Area2 shall not be less than (>=)	100,00	%	275,16	Pass	+175,16
HSC mono. Intact	2.3.3.2: Area 0 to 30 or GZmax	3,1513	m.deg	17,3650	Pass	+451,04
HSC mono. Intact	2.3.3.3: Area 30 to 40	1,7189	m.deg	10,1408	Pass	+489,96
HSC mono. Intact	2.3.3.4: Max GZ at 30 or greater	0,200	m	1,030	Pass	+415,00
HSC mono. Intact	2.3.3.5: Angle of maximum GZ	15,0	deg	38,2	Pass	+154,55
HSC mono. Intact	2.3.3.6: Initial GMt	0,150	m	2,552	Pass	+1601,33
HSC mono. Intact	2.12.18.2: Combined heeling: Angle of				Pass	
	equilibrium					
	High-speed turning (Ht)	8,0	deg	0,8	Pass	+90,11
	Hpc + Hw	10,0	deg	0,3	Pass	+97,27
	Ht + Hw	12,0	deg	0,8	Pass	+93,03
A.749(18) Ch3 - Design	3.2.2: Severe wind and rolling	-			Pass	
criteria applicable to all ships						
	Angle of steady heel shall not be greater than	16,0	deb	1,1	Pass	+93,41
	(<=)					
	Angle of steady heel / Deck edge immersion	80,00	%	3,07	Pass	+96,16
	angle shall not be greater than (<=)					
	Area1 / Area2 shall not be less than (>=)	100,00	%	249,04	Pass	+149,04

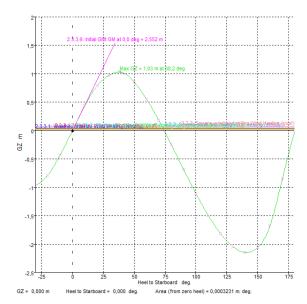


Figura 51 – Estabilidade - LC02 – CHEGADA - Água, Carga e PAX

A definição dos critérios a serem utilizados e os resultados da estabilidade e equilíbrio são mostrados na janela 'Criteria'. Há 16 tipos diferentes de critérios pré-definidos no NAPA, porém existe também a possibilidade de definir um novo critério através de um macro. Os critérios pré-definidos são apresentados na Tabela 7. O NAPA possui também em seu banco de dados os critérios padrões definidos por regra, mas é prudente verificar se esses estão atualizados. Os critérios utilizados são apresentados a seguir:

Tabela 7 – Critérios de Estabilidade Intacta

RCR	TEXT	REQ
GZO.2 V.GMO.1 AREA3O4 MAXGZ25 GMO.15	Area under GZ curve . Area under GZ curve . Max GZ > 0.2 SGM > 0.15 m OArea under GZ curve . Max. GZ at an angle . GM > 0.15 m .IMO weather criterion	0.055 0.090 0.200 0.150 0.030 25.000 0.150 1.000

Os passos para gerar o relatório de estabilidade são apresentados nas Figuras 33 e 34.

Figura 6 – Passos para cálculo da Estabilidade

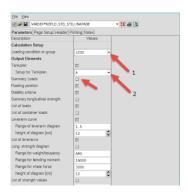


Figura 7 – Gerando o Relatório de Estabilidade

A Figura 35 apresenta o resultado da estabilidade da condição de carregamento mostrada, como exemplo de *output*.

FLOATING POSITION

Trim		2.388	m m	KM KG		.54 m .96 m		
Heel, P	S=+		deg					
TA		2.570		GM0		.58 m		
TF.		2.206		GMCO		.41 m		
Trimmin	g moment	-524	tonm	GM	2	.17 m		
Stabili	ty Criter	ia 						
RCR	TEXT			REQ	ATTV I		STAT	
AREA30	Area und	er GZ cur		0.055				
	Area und				0.414 :			
	Max GZ >			0.200	0.905 :		OK	
V.GM0.1	5GM > 0.1	5 m		0.150	2.168 r	n	OK	
	OArea und							
MAXGZ25	Max. GZ	at an ang	;le . :	25.000	37.804	ieg		
	GM > 0.1				2.168 :		OK	
V.IMOWE	.IMO weat	her crite	rion	1.000	2.268		OK	
righting lever m	; 			; 		İ		
# ,								
.s-				NAMI.				
		+		N2M1		+		
		+						
		+		EMI EMI				
		+				+		
		+						
		130			1	4 heeling	angle	degre
		10	20		1 20	Heeling	angle	degre
	MS	HPHI NPHI	29 EPHI				angle	degre
0.5-	MS m	HPHI m	EPHI rad*m	EPB1	DGZ		angle	degre
0.5- HEEL degree		m	rad*m	FSMOM tm	DGZ		angle	degre
HEEL degree	m 0.000	0.00	rad*m 0.000	FSMOM tm	DGZ #		angle	degre
HEEL degree		0.00 0.19	rad*m	FSMOM tm 0.0 26.0	DGZ # 0.000 0.036		angle	degre
HEEL degree 0.0 5.0	0.000 -0.003 -0.009	0.00 0.19 0.37	0.000 0.008 0.032	FSMOM thm 0.0 26.0 52.5	0.000 0.036 0.073		angle	degre
HEEL degree 0.0 5.0 10.0 15.0	0.000 -0.003 -0.009	0.00 0.19 0.37	0.000 0.008 0.032	FSMOM tm 0.0 26.0 52.5 77.5	0.000 0.036 0.073		angle	degree
HEEL degree 0.0 5.0 10.0 15.0 20.0	0.000 -0.003 -0.009 -0.032 -0.088	0.00 0.19 0.37 0.53 0.67	0.000 0.008 0.032 0.072 0.124	FSMOM tm 0.0 26.0 52.5 77.5 89.6	0.000 0.036 0.073 0.107		angle	degree
HEEL degree 0.0 5.0 10.0 15.0 20.0	0.000 -0.003 -0.009	0.00 0.19 0.37	0.000 0.008 0.032	FSMOM tm 0.0 26.0 52.5 77.5 89.6	0.000 0.036 0.073 0.107		angle	degree
HEEL degree 0.0 5.0 10.0 20.0 30.0	0.000 -0.003 -0.009 -0.032 -0.088	0.00 0.19 0.37 0.53 0.67 0.85	0.000 0.008 0.032 0.072 0.124	FSMOM tm 0.0 26.0 52.5 77.5 89.6 98.2	0.000 0.036 0.073 0.107 0.124		angle	degra

Figura 35 – Estabilidade - LC02 - CHEGADA - Água, Carga e PAX

4.15 - Estabilidade em Avaria

Para o cálculo de estabilidade em avaria seguiu-se como referência o regulamento "HSC CODE 2000" (1994), uma vez que esse regulamento foi elaborado para embarcações de sustentação totalmente ou parcialmente dinâmica. Esse regulamento utiliza o critério

probabilístico do SOLAS para estabilidade em avaria, independentemente da embarcação ser ou não de passageiros. Dessa forma, aplicouse à embarcação a resolução "A.218 (VIII) do SOLAS". Esse critério compara o índice A, Índice de Sobrevivência Acumulado, ao índice de referência R, Índice de Sobrevivência Requerida. Se o índice alcançado for maior que o requerido, a embarcação está aprovada no critério.

O critério foi aplicado através dos softwares Maxsurf e NAPA. Definiu-se nos dois softwares 10 zonas de avaria, com representação real da compartimentação, exceto na sala do motor e no pique tanque de vante. Estas regiões foram consideradas como sem nenhum tipo de limitação (costado ou deck existentes na região), por simplificação, mas a favor da segurança uma vez que a probabilidade de ocorrer aumenta e o tamanho da avaria também.

4.15.1 - Estabilidade em Avaria - Maxsurf

O cálculo de estabilidade em avaria, assim como o de intacta, é feito no Maxsurf Hydromax Ultimate. Para iniciar o cálculo deve-se escolher a opção 'Probabilistic Damage'. Os dados de entrada para o cálculo da avaria probabilística são fornecidos na janela "Damage". Esta janela é apresentada na Figura 36, e os dados de entrada são fornecidos em cada aba.

O índice alcançado foi satisfatoriamente maior que o requerido conforme mostrado na Tabela 8, a seguir:

 Tabela 8 – Avaliação do Critério - Maxsurf

 A
 R

 Critério
 0,9894
 0,6763

4.15.2 - Estabilidade em Avaria- NAPA

O cálculo da estabilidade em Avaria no NAPA foi feito através da ferramenta 'MANAGER'. A janela principal desse macro pode ser vista na Figura 37.

As definições dos dados de entrada, a escolha do método a ser utilizado, a realização das análises e a aquisição dos resultados são feitas 'clicando'-se nas pastas localizadas à esquerda da janela principal.

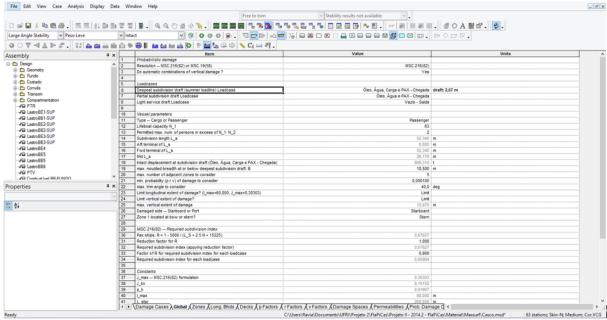


Figura 36 - Avaria Probabilística no Maxsurf

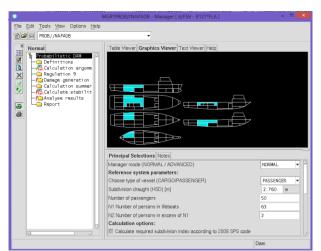


Figura 37 - Avaria Probabilística no NAPA

O índice alcançado foi satisfatoriamente maior que o requerido conforme mostrado na Tabela 9, a seguir:

Tabela 9 - Avaliação do Critério - NAPA

	Α	R
Critério	0,86725	0,6763

4.16 - Seakeeping

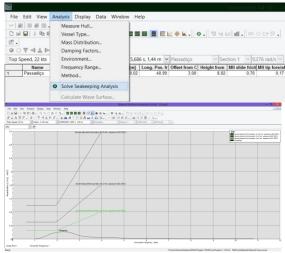
Para a análise de seakeeping apresenta-se aqui apenas uma condição de carregamento, para fins ilustrativos. Das 16 condições testadas e aprovadas, apresenta-se aqui apenas a condição de carregamento 'Partida Leve'.

O ponto considerado importante foi a região do passadiço como é especificado na Figura 38, a seguir:

Name	Long. Pos. [m]	Offset [m]	Height [m]	Long. Pos. from CG [m]
Passadiço	41	3	8,02	17,6

Figura 38 – Posição analisada (passadiço)

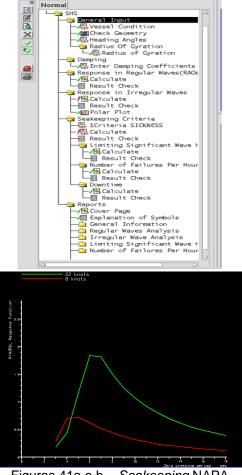
O espectro de onda utilizado foi o de Jonswap, com características de um mar 3+, altura de onda de 1,44 m e período médio de onda de 5,687 seg.


Os raios de giração utilizados foram calculados pelo NAPA e estão apresentados na Figura 39.

Radius Of Gyration Notes	
Roll radius of gyration / B (KXX)	0.920116
Pitch radius of gyration / L (KYY)	0.204923
Yaw radius of gyration / L (KZZ)	0.205748
Cross radius of gyration / L (KXY)	0.00747637
Cross radius of gyration / L (KXZ)	0.0300233
Cross radius of gyration / L (KYZ)	0.00754959

Figura 39 – Raios de Giração

4.16.1 - Seakeeping - Maxsurf


O cálculo do *Seakeeping* para o Maxsurf é feito no Maxsurf Seakeeper. A Figura 40a apresenta a interface do programa. Desta interface seleciona-se a Localização, a Velocidade, o Espectro e a incidência de onda. Ao acionar a análise esta versão processa a Teoria das Faixas. Os dados de entrada são fornecidos na janela 'Inputs' e os resultados são obtidos na janela 'Results'. As respostas vem em RAOs e MSI, tabelas e gráficos. As acelerações verticais de *heave*, em ambos *softwares* foram baixas, na ordem de 1,18 m/s² e os tempos de exposição superiores a 8 horas.

Figuras 40a e b – Seakeeping Maxsurf

4.16.2 - Seakeeping - NAPA

O cálculo do *Seakeeping* no NAPA foi feito através da ferramenta "MANAGER". Com esse gerenciador é possível entrar com os dados de entrada, determinar o método utilizado, realizar os cálculos e obter os resultados. A janela desse macro está na Figura 41a e o NAPA oferece apenas curva de RAO, Figura 41b, e apenas indicações de MSI.

Figuras 41a e b – Seakeeping NAPA

5 - Comparação dos Softwares

Para realizar uma análise comparativa do funcionamento dos *softwares* comerciais NAPA e Maxsurf os seguintes critérios foram adotados:

- 1. Facilidade de utilização: Esse parâmetro analisa a simplicidade no uso de cada módulo ou subsistema;
- 2. Qualidade da Interface: tem como objetivo avaliar a interface de cada módulo. A qualidade está ligada a clareza dessa interface e a forma que ela está organizada;
- 3. Menor tempo necessário para definir os dados de entrada;
- 4. Menor tempo de processamento das análises:
 - 5. Clareza dos dados de saída:
- 6. Menos facilidade de ocorrer erros na definição dos dados de entrada;
- 7. Menor facilidade de reconhecer e consertar um erro;
- 8. Integração do programa: nível de integração entre cada subsistema ou módulo do programa.

Tabela 10 – Avaliação

Muito Bom MB

Bom B

Razoável R

Ruim RU

Não se aplica NA Parâmetro de Análise Software 1 2 3 6 R NAPA Forma Maxsurf MB NΑ MB NA NA MB В NAPA В Hidrostáticas e Cruzadas В В МВ R R В В Maxsurf NAPA MB В ME В Besistência ao Avanço MB MB MB В MB В MB Massurf MF R MB NAPA Compartimentação NΑ MB В В В В MB Massurf NAPA В carregamento MB МВ Na R В В Maxsurf R NAPA В В В MB Equilíbrio Maxsurf MB В MB RU R MB В NAPA Estabilidade em Avaria

Fazendo uma análise global de cada parâmetro temos que em relação à facilidade de utilização o Maxsurf é o mais fácil de ser utilizado, porém quando o parâmetro comparado é a interface do programa o NAPA é melhor. Em relação ao tempo, é mais rápido definir os dados de entrada no Maxsurf. Entretanto, NAPA realiza as análises muito mais rápido.

B B R RU B B B

МВ

В

R B MB

В

В

Maxsurf NAPA

Maxsurf

Seakeeping

Tanto o NAPA quanto o Maxsurf possuem um manual online de ajuda muito detalhado e

bem explicado, ajudando durante o trabalho. Porém, o Maxsurf possui muitos vídeos de tutorais na internet, o que ajuda a aprender como se utilizar o *software*, o que não ocorre com o NAPA.

A integração do banco de dados no NAPA é mais eficiente, pois ela compartilha a sua base de dados, sem modificar as referências ao mudar de um subsistema para outro.

O Macro do NAPA é uma grande ferramenta, já que depois de criados eles ficam no banco de dados do NAPA podendo utilizá-los em qualquer outro projeto, o que aumenta a quantidade de ferramentas do *software*.

6 - Conclusões

Baseando-se nos dados desse trabalho, é possível concluir que o projeto está bem ajustado, sendo viável, navega em todas as condições de carregamento, garantindo tanto estabilidade intacta quanto em avaria, e que seu comportamento em mar é razoável por uma janela de tempo significativa para condições de mar altas da região de operação e mantendo a velocidade máxima.

É possível concluir também, que os dois softwares aqui estudados são ferramentas poderosas, conseguindo integrar as fases de projeto. Outra conclusão importante é que eles possuem a mesma aplicabilidade nas mesmas etapas de projeto. O Maxsurf é um software mais fácil de ser usado, sendo melhor para projetistas iniciantes. Entretanto, com o ganho de experiência nos softwares o NAPA passa a ser mais poderoso, pois ele é um software mais completo e integrado, com o seu tempo de processamento das análises muito menor que do Maxsurf, o que no diaadia é uma redução nos custos de projeto, sendo assim um grande diferencial.

7 - Agradecimento

Os autores desejam agradecer à **FINEP** pelo patrocínio que tornou possível o desenvolvimento deste projeto.

8 - Referências Bibliográficas

American Bureau of Shipping, *Guide for Build-ing and Classing High-Speed Naval Craft*, ABS, 2007

AUTODESK, INC. *AutoCAD* (Educational Product), 2013

CASTELLI, L.C., MONTEIRO, F.V., PEREIRA, P.G.A., *Programa para Cálculo de Propulso-* res Supercavitantes, Trabalho de classe, disciplina EEN -591, DENO/ UFRJ, 2014

ENGELAND, M.V., Freeship Manual, [online], 2015

engines MTU (2015). <a href="http://www.mtu-online.com/mtu/products/engine-program/diesel-engines-for-marine-main-propulsion-dieselelectric-drives-and-onboard-power-generation/diesel-engines-for-yachts/detail/product/511/cHash/089e4b9f413a 866bee3730b7ee42f494/.

FORMSYS, *Maxsurf, Version 17*, Integrated Naval Architecture Software (2015)

HOLTROP, J., A statistical Re-Analysis of Resistance and Propulsion Data. I.S.P. V.31(363), 272-276, 1984

HOLTROP, J., & MENNEN, G. G., *An approximate Power Prediction Method.* I.S.P. V.29(335), 166-170, 1982

ICLL - International Convention on Load Lines - IMO (International Maritime Organization), London, 1966

ICTMS - International Convention on Tonnage Measurement of Ships - IMO (International Maritime Organization), London, 1969

International Code of Safety for High Speed Craft - HSC Code (1994)

Marpol 73/78, Regulations for the Prevention of Pollution by Oil, IMO (International Maritime Organization), London, 2002

MONTEIRO, F.V., Análise comparativa do processo de projeto desenvolvido em dois softwares comerciais (NAPA e Maxsurf) aplicado a um fast supply boat (FSV) de deslocamento de alta velocidade para operar no présal, Projeto de Graduação, DENO/ UFRJ, 2014

NEWTON, R.N., & RADER, H.P., *Performance data of propellers for high-speed craft,* RINA Quartely Trans., V.103/2, 93-129, 1961

Normam-01- DPC, Normas da Autoridade Marítima para Embarcações Empregadas na Navegação em Mar Aberto, Diretoria de Portos e Costas, 2005

Refritubos Comércio de Metais, [online] http://www.refritubos.com.br/chapa+de+alumini o+lisa.asp?produto=aluminio, 2015

Regras para Classificação e Construção de Navios de Aço em Mar Aberto, RBNA (Registro Brasileiro de Navios e Aeronaves), 2008

ROBERT MCNEEL & ASSOCIATES, Rhinoceros 4.0 Educational, 2007

Solutions for Design and Operation of Ships. (2015). https://www.napa.fi/